Boeing Wingbox Assembly

Fall 2015 Team: Zach Baierl (MTLE), Connor Finnell (CSE), Michael Macarevich (CSE), Samuel Nathanson (ME), Robert Orban (ME), Abdulaziz Shamsah (ME), James Whelan (IME)

Purpose and Motivation

Develop an autonomous or semi-autonomous system to perform various tasks required for the manufacture and maintenance of airplane wingboxes. Reduce need for human work inside wingbox, increasing efficiency, safety and decreasing costs.

Confined Space: The Wingbox

Approximate Dimensions

Length	33" – 187"
Wing Boxes Per Wing	20 – 30
Front Spar Height	7" – 34"
Rear Spar Height	6" – 42"
Access Port	18" x 10"

The small dimensions of the wingbox make human performance of tasks such as laying and inspecting sealants difficult.

Inherited System

Utilizing a separate camera and laser, a foundational bead analysis system was created by previous teams with width analysis capability.

Main Semester Objective

Design and build a prototype end effector, to house and expand upon the inherited system, for post application analysis of bead sealants as applied to butt seams.

Sub Systems

- Computerized Visual Inspection System
 - Computer analysis of bead geometry
- Housing
 - Contain camera, laser, and supporting hardware in one unit.

Technical Approach

CVIS Results and Final Housing

Combined system analyzing a sealant bead.

Final System

