Design Applications for Light Diffusing Glass Fiber Optics

Spring 2016: Joel Ahearne-Ray (MTLE), Heather Danielsen (MECHE/DIS), Andrew Groskopf (EE/CSE), William Howard (MTLE), Levi Kennedy (MECHE), Jacob Morales (MTLE), Elena Steffan (MECHE/DIS), Juancarlos Vivar (MECHE),

Purpose

To increase the customer base of FibranceTM (Light Diffusing Fiber) for Corning, through applications in the automotive and architectural industries.

Project History

The Fall 2015 Fibrance™ Team:

- Developed a catalog of potential applications
- Investigated Fibrance[™] applications in automotive and architectural markets
 - Wall decorating
 - Semi-Trailer Advertisement
 - Tabletop Decoration
 - · Crosswalk Lighting
 - Foot Well Lighting
 - Chandelier
- Prototyped a laser control unit and an application deployment tool
- Designed components for mounting and researched methods of adherence

Semester Objectives

Develop Enabling Technologies

- · Low cost, end of fiber reflector to achieve uniform light distribution throughout length: efficiency > 50%
- Practical mounting solutions to aid in Fibrance™ installation within architectural applications

Mounting Solutions

Hook & Rail

Pressure fitted shape with .030in diameter to hold Fibrance™ in place with friction

Spool

Deployment device that attaches to arm to install Fibrance™ in a user-friendly manner

Applicator Tip

UV Curina

Ergonomic handheld device to cure Bondic[™] to desired surfaces

Mounting Testing Results

Adhesives

Shear and tensile strength tests on adhesive and material combinations:

· Super Glue, Epoxy, and UV Curing

Adhesive Testing Setup

Hook & Rail

Testing Plastic Coverings

Hook Corner Testing

Prototyped hooks to test the fit with Fibrance™. Learned that the Fibrance™ will require an adhesive to hold it in place based on the tolerances and compliance of both the fiber and hooks.

UV Curing

Tested for full curing of 12 LEDs. 30° viewing angle, spaced 0.609in at a velocity of 1.8 in/s

Reflectivity Solutions

Gallium Gallium **PVC Exterior** Coating Fibrance[™] Core

(12 °C)

Gallium Solidification Times Cool Tap Water Room Temp

(22 °C) Solidification 1-2 Minutes >30 Minutes

Reflective Sleeve

End of Fibrance™ lays flush against reflective cap

Reflectivity Testing Results

Gallium

Reflective Sleeve

30-53% Reflectivity

20-33% Reflectivity

Used a photoresistor to measure the light along the length of Fibrance[™]. Took multiple measurements at 6 inch intervals, averaged, and then graphed the results.