Quench Variability

Spring 2016: Adnan Alodaini (ME), Austin Amery (ME), Olaf Bergeson(MTLE), Gregory DiGuido (ME), Shams Khondkar (MTLE/BMED), Colin Krum (ME), Beth Lotterer (MTLE), Nathaniel Miller (ME)

Purpose:

• Evaluate the reason(s) for increased quenching from June to September and provide suggestions/solutions to reduce/eliminate magnet quenching

Background

- MRI Superconducting magnet cooled with liquid helium to 4K
- Quenching is a massive helium boil off
- Caused by small increase in temperature
- Slips in wire-epoxy create frictional heat
- More common during humid summer
- Quenching costs time and money

Semester Accomplishments

- Statistically supported hypotheses for quench variability
- Determined how the surface finish of the wire correlates to slippage
- Analyzed how environmental humidity affects the wire-to-epoxy bond strength
- Measured moisture build up within the epoxy and test how this affects bonding capabilities

Philips Core During Manufacturing

Months of the Year Current Quench Frequency Mitigating Seasonal Variability Mitigating Seasonal, Wire Supplier & Process Variability Mitigating Wire Supplier & **Process Variability**

New sample design for Tensile Test

Slip Test Underway

Technical Results

- Humidity is absorbed into epoxy and DMD
- Humidity reduces wire-epoxy bond strength, determined by slip testing
- Wire suppliers have chemically similar surfaces, determined by spectroscopy
- Supplier with roughest wire provided highest bond strength, determined by microscopy

Recommendations

- Reduce local humidity around cured/curing magnet
- Finish winding magnet in one session
- Switch to wire supplier with roughest surface
- Blow heat on wire to remove adsorbed water.