

NGC Gantry Crane

Purpose: Redesign gantry design system to reduce time, manpower and cost for NGC gearbox maintenance in GE Wind Turbines.

Current Design

- A NGC gantry crane is used to move the gearbox's casing (2MN) to access the high speed shaft (HSS) and subsequent rebuild/alignment
- Casing moves 100mm forward and separate top half 20mm up for process

Current Issues

- Process requires 4 technicians to work 5 12-14 hour workdays
 - 1.5 days to install, 2 day to repair,
 1.5 days to takedown (overlapping work)
 - 15-20 lifts for crane members, tools, and supplies
 - Bill of Materials: \$117,000
 - Labor Costs: \$27,000

Assembled NGC gantry crane

Past Work

- Explored various member shape, size, and designs for optimization
 - Bolted, folded, and telescoping beams
- Identified two promising designs: bolt–hydraulic and cable suspension

Separation of the gearbox casing

Cable suspension concept

Semester Results

- Both designs are feasible and provide promising solutions
- Bolt supported system offers greatest cost and time savings

Design Concepts and Technical Accomplishments Cable Suspension Bolt Supported

- Replace main beams in current gantry crane with cables
- Reduced size and weight of other crane members
- Pros
 - Reduced weight
 - · Increased maneuverability
 - Reduced installation time
- Cons
 - Higher occupational risk
 - Inspection for cable fatigue

Sheave Design (Above)
 Equalizer block for trolley (Left)

- Chain hoist to lift housing (Center)
- Turnbuckle to pre-tension sling (Right)

Highlighted bolt replacement

- Replace bottom half bolts in casing, function like cantilever beams
- Reduced size and weight of other
 Use 2 heavy duty jib cranes to help support housing
 - Slide casing on bolts
 - Issues
 - · Housing binding on bolts
 - Realigning housing with gearbox
 components

Jib Crane Support

Bolt Material Selection | FOS | Deflection (mm) | Machining Comments **Austempered Ductile** Easy to cast 3.09 13.6 Iron Grade 5 Specific heat treatment Titanium Carbide Difficult to work 2.29 5.15 K162B Slender parts Titanium Alloy Easy to work 1.58 1.79 Grade 6 Annealed Similar to stainless steel

Final Comparison

Metrics	Current Crane	Cable Design	Bolt Design
Time (days)	5	3	2
Weight (lbs)	1624	612	1231
Material Cost	\$116,960.00	\$22,000.00	\$24,210.00
FOS	5	4.6	4.7

Eye & Eye Synthetic Sling