

GE Wind Turbine Reliability Analytics

Gear Box Drive Train Analysis

Semester Objective

- Generate lifetime consumption estimations
 - Wind Turbine drive train components
 - From field monitoring data
- Develop fatigue based metrics

Project Plan

- Understand last semester's approach and assumptions and propose improvements
- Develop set of algorithms with
 - Improved shaft model
 - Improved gear model
 - Time at torque metric
 - Simulated high frequency data
- Rank turbines based on results
- ✓ Benchmark against expected wind conditions

Project Overview

Gear Box Analysis

- 1. Helical Gears.
- 2. Analysis of Each Gear.
- 3. Bending and Surface Contact Stresses.

Main Shaft Analysis

Time at Torque

• Time at Torque histogram showing cumulative torque loading for a single turbine.

Simulated High Frequency Data

Results

Low speed shaft will not fatigue

Gear tooth fatigue is a sensitive indicator of gearbox life

Time at torque can be used to rank overall turbine life

